lunes, 19 de marzo de 2012

CAPITULO 6 : VLSM Y CIDR

INTRODUCCIÓN DEL CAPITULO.- Antes de 1981, las direcciones IP usaban sólo los primeros 8 bits para especificar la porción de red de la dirección, lo que limitaba Internet, entonces conocida como ARPANET, a 256 redes. Pronto fue evidente que este espacio de dirección no iba a ser suficiente.
En 1981, la RFC 791 modificó la dirección IPv4 de 32 bits para permitir tres clases o tamaños distintos de redes: clase A, clase B y clase C. Las direcciones de clase A usaban 8 bits para la porción de red de la dirección, las de clase B usaban 16 bits y las de clase C usaban 24 bits. Este formato se hizo conocido como direccionamiento IP con clase.
El desarrollo inicial del direccionamiento con clase resolvió el problema de límite de 256 redes, por un tiempo. Una década más tarde, fue evidente que el espacio de dirección IP se estaba reduciendo rápidamente. En respuesta, el Grupo de trabajo de ingeniería de Internet (IETF) introdujo Classless Inter-domain Routing (CIDR), que utilizaba una máscara de subred de longitud variable (VLSM) para ayudar a conservar el espacio de dirección.
Con la introducción de CIDR y VLSM, los ISP ahora podían asignar una parte de una red con clase a un cliente y otra parte diferente a otro cliente. Esta asignación no contigua de direcciones de los ISP era análoga al desarrollo de los protocolos de enrutamiento sin clase. Para comparar: los protocolos de enrutamiento con clase siempre resumen el borde con clase y no incluyen la máscara de subred en actualizaciones de enrutamiento. Los protocolos de enrutamiento sin clase sí incluyen la máscara de subred en las actualizaciones de enrutamiento y no deben realizar el resumen. Los protocolos de enrutamiento sin clase que se discuten en este curso son los RIPv2, EIGRP y OSPF.
Con la introducción de VLSM y CIDR, los administradores de red tuvieron que usar habilidades relacionadas con la división en subredes adicionales. VLSM simplemente subdivide una subred. Las subredes, a su vez, se pueden dividir en subredes en varios niveles, como aprenderá en este capítulo. Además de la división en subredes, se hizo posible resumir una gran colección de redes con clase en una ruta agregada o superred. En este capítulo, también revisará las habilidades relacionadas con el resumen de ruta.
DIRECCIONAMIENTO IP CON CLASE.- Cuando en 1969 se puso en funcionamiento ARPANET, nadie imaginó que Internet superaría de tal forma los humildes comienzos de este proyecto de investigación. En el año 1989, ARPANET se había transformado en lo que hoy conocemos como Internet. En la siguiente década, la cantidad de hosts de Internet creció de manera exponencial, de 159000, en octubre de 1989, a más de 72 millones a fines del milenio. A partir de enero de 2007, había más de 433 millones de hosts en Internet.
Sin la introducción de la notación CIDR y VLSM en 1993 (RFC 1519), la traducción de direcciones de nombre (NAT) en 1994 (RFC 1631) y el direccionamiento privado en 1996 (RFC 1918), el espacio de dirección IPv4 de 32 bits estaría agotado.
Estructura del direccionamiento con clase IPv4
Las designaciones de los bits de red y de los bits de host se establecieron en la RFC 790 (publicada con la RFC 791). Como se muestra en la figura, las redes de clase A usaban el primer octeto para la asignación de red, que se traducía a una máscara de subred con clase 255.0.0.0. Debido a que sólo se dejaron 7 bits en el primer octeto (recuerde que el primer bit es siempre 0), esto dio como resultado 2 a la 7ma potencia o bien 128 redes.
Con 24 bits en la porción de host, cada dirección de clase A tenía capacidad para más de 16 millones de direcciones host individuales. Antes de CIDR y VLSM, a las organizaciones se les asignaba una dirección de red con clase completa. ¿Qué iba a hacer una organización con 16 millones de direcciones? Ahora puede entender el enorme desperdicio de espacio de direcciones que se produjo durante los comienzos de Internet, cuando las empresas recibían direcciones de clase A. Algunas empresas y organizaciones gubernamentales aún tienen direcciones de clase A. Por ejemplo, General Electric posee 3.0.0.0/8, Apple Computer posee 17.0.0.0/8 y el Servicio Postal de los Estados Unidos posee 56.0.0.0/8. (Consulte el enlace "Internet Protocol v4 Address Space" [Espacio de dirección del Protocolo de Internet v4] que figura a continuación para ver una lista de todas las asignaciones de IANA.)
La clase B no era mucho mejor. La RFC 790 especificaba los primeros dos octetos como red. Con los primeros dos bits ya establecidos en 1 y 0, quedaban 14 bits en los primeros dos octetos para asignar redes, lo que produjo 16 384 direcciones de red de clase B. Debido a que cada dirección de red de clase B contenía 16 bits en la porción de host, controlaba 65534 direcciones. (Recuerde que se reservaban 2 direcciones para las direcciones de red y de broadcast). Sólo las organizaciones más grandes y los gobiernos podían llegar a usar alguna vez las 65 000 direcciones. Como en la clase A, el espacio de dirección de clase B se desperdiciaba.
CIDR y resumen de ruta
CIDR usa Máscaras de subred de longitud variable (VLSM) para asignar direcciones IP a subredes de acuerdo con la necesidad individual en lugar de hacerlo por la clase. Este tipo de asignación permite que el borde de la red/del host se produzca en cualquier bit de la dirección. Las redes, a su vez, se pueden subdividir o dividir en subredes cada vez más pequeñas.
Del mismo modo que Internet estaba creciendo a un ritmo exponencial a principios de la década de 1990,el tamaño de las tablas de enrutamiento que los routers de Internet mantenían también estaba creciendo bajo el direccionamiento IP con clase. CIDR permitía la agregación de prefijo, que ya se conoce como resumen de ruta. Recuerde del Capítulo 2, "Enrutamiento estático", que se puede crear una única ruta estática para varias redes. Las tablas de enrutamiento de Internet ahora podían beneficiarse del mismo tipo de agregación de rutas. La capacidad de las rutas para ser resumidas como una sola ruta ayuda a reducir el tamaño de las tablas de enrutamiento de Internet.
En la figura, observe que ISP1 tiene cuatro clientes, cada uno con una cantidad variable de espacio de dirección IP. Sin embargo, todo el espacio de dirección de los clientes puede resumirse en una única notificación a ISP2. La ruta 192.168.0.0/20 resumida o agregada incluye todas las redes que pertenecen a los Clientes A, B, C y D. Este tipo de ruta se conoce como ruta de superred. Una superred resume varias direcciones de red con una máscara menor que la máscara con clase.
Propagar la VLSM y las rutas de superred requiere un protocolo de enrutamiento sin clase porque la máscara de subred ya no puede determinarse con el valor del primer octeto. La máscara de subred ahora necesita incluirse con la dirección de red. Los protocolos de enrutamiento sin clase incluyen la máscara de subred con la dirección de red en la actualización de enrutamiento.
PROTOCOLO DE ENRUTAMIENTO SIN CLASE.- Los protocolos de enrutamiento sin clase incluyen RIPv2, EIGRP,OSPF, IS-IS y BGP. Estos protocolos de enrutamiento incluyen la máscara de subred con la dirección de red en sus actualizaciones de enrutamiento. Los protocolos de enrutamiento sin clase son necesarios cuando la máscara no puede suponerse ni determinarsecon el valor del primer octeto.
Por ejemplo, las redes 172.16.0.0/16, 172.17.0.0/16, 172.18.0.0/16 y 172.19.0.0/16 pueden resumirse como 172.16.0.0/14.
Si R2 envía la ruta resumida 172.16.0.0 sin la máscara de /14, R3 sólo sabe aplicar la máscara con clase predeterminada de /16. En un escenario de protocolos de enrutamiento con clase, R3 no tiene conocimiento de las redes 172.17.0.0/16, 172.18.0.0/16 y 172.19.0.0/16.
Nota: Con un protocolo de enrutamiento con clase, R2 puede enviar estas redes individuales sin resumen, pero se pierden los beneficios del resumen.
Los protocolos de enrutamiento con clase no pueden enviar rutas de superred porque el router de recepción aplicará la ruta con clase predeterminada a la dirección de red en la actualización de enrutamiento. Si nuestra topología tuviera un protocolo de enrutamiento con clase, entonces R3 sólo instalaría 172.16.0.0/16 en la tabla de enrutamiento.
Nota: Cuando una ruta de superred se encuentra en una tabla de enrutamiento, por ejemplo, como unaruta estática, un protocolo de enrutamiento con clase no incluirá esa ruta en sus actualizaciones.
Con un protocolo de enrutamiento sin clase, R2 publicará la red 172.16.0.0 conjuntamente con la máscara de /14 a R3. Entonces, R3 podrá instalar la ruta de superred 172.16.0.0/14 en su tabla de enrutamiento, lo que le dará la posibilidad de conexión con las redes 172.16.0.0/16, 172.17.0.0/16, 172.18.0.0/16 y 172.19.0.0/16.
VLSM EN ACCION.- En un curso anterior, usted aprendió cómo una Máscara de subred de longitud variable (VLSM) permite usar distintas máscaras para cada subred. Después de que una dirección de red se divide en subredes, esas subredes también se pueden dividir en subredes. Como seguramente recuerda, VLSM simplemente subdivide una subred. La VLSM puede imaginarse como la división en subredes.
CIDR- 6.3.1    RESUMEN DE RUTA.- Como ha aprendido anteriormente, el resumen de ruta, también conocido como agregación de ruta, es el proceso de publicar un conjunto de direcciones contiguas como una única dirección con una máscara de subred más corta y menos específica. Recuerde que CIDR es una forma de resumen de ruta y es sinónimo del término creación de superredes.
Ya se debe haber familiarizado con el resumen de ruta que realizan los protocolos de enrutamiento con clase como RIPv1. RIPv1 resume las subredes en una única dirección con clase de red principal cuando envía la actualización de RIPv1 de una interfaz que pertenece a otra red principal. Por ejemplo, RIPv1 resumirá las subredes 10.0.0.0/24 (de 10.0.0.0/24 a 10.255.255.0/24) como 10.0.0.0/8.
CIDR ignora la limitación de los bordes con clase y permite el resumen con las máscaras que son menores que las de la máscara con clase predeterminada. Este tipo de resumen ayuda a reducir la cantidad de entradas en las actualizaciones de enrutamiento y disminuye la cantidad de entradas en las tablas de enrutamiento locales. También ayuda a reducir la utilización de ancho de banda para las actualizaciones de enrutamiento y da como resultado búsquedas de la tabla de enrutamiento más rápidas.
La figura muestra una única ruta estática con la dirección 172.16.0.0 y la máscara 255.248.0.0 que resume todas las redes con clase de 172.16.0.0/16 a 172.23.0.0/16. Si bien 172.22.0.0/16 y 172.23.0.0/16 no se muestran en el gráfico, éstas también se incluyen en la ruta resumida. Observe que la máscara de /13 (255.248.0.0) es menor que la máscara con clase predeterminada de /16 (255.255.0.0).
Nota: Debe recordar que una superred es siempre una ruta resumida, pero una ruta resumida no siempre es una superred. Es posible que un router tenga una entrada de ruta específica y una entrada de ruta resumida que cubra la misma red. Supongamos que el router X tiene una ruta específica para 172.22.0.0/16 que usa serial 0/0/1 y una ruta resumida de 172.16.0.0/14 que usa serial 0/0/0. Los paquetes con la dirección IP de 172.22.n.n coinciden con ambas entradas. Estos paquetes destinados para 172.22.0.0 se enviarían desde la interfaz serial 0/0/1 porque hay una coincidencia más específica de 16 bits, que con los 14 bits de la ruta resumida 172.16.0.0/14.

No hay comentarios:

Publicar un comentario