INTRODUCCIÓN DEL CAPITULO.- La versión 2 de RIP (RIPv2) se define en RFC 1723. Éste es el primer protocolo de enrutamiento sin clase que se discute en el curso. La figura ubica a RIPv2 en su propia perspectiva con respecto a otros protocolos de enrutamiento. Si bien RIPv2 es un protocolo de enrutamiento apropiado para algunos ambientes, pierde popularidad cuando se compara con protocolos de enrutamiento tales como EIGRP, OSPF e IS-IS, que ofrecen más funciones y son más escalables.
Aunque puede ser menos popular que otros protocolos de enrutamiento, ambas versiones de RIP aún son apropiadas para algunas situaciones. Si bien RIP carece de las capacidades de muchos protocolos posteriores, su simplicidad y amplia utilización en varios sistemas operativos lo convierten en un candidato ideal para las redes homogéneas más pequeñas, donde es necesaria la compatibilidad con varios fabricantes, especialmente dentro de los ambientes UNIX.
Debido a que necesitará entender RIPv2, incluso si no lo usa, este capítulo se concentrará en las diferencias entre un protocolo de enrutamiento con clase (RIPv1) y un protocolo de enrutamiento sin clase (RIPv2), más que en los detalles de RIPv2. La limitación principal de RIPv1 es que es un protocolo de enrutamiento con clase. Como usted sabe, los protocolos de enrutamiento con clase no incluyen la máscara de subred con la dirección de red en las actualizaciones de enrutamiento, lo que puede ocasionar problemas con las redes o subredes no contiguas que usan la Máscara de subred de longitud variable (VLSM). Como RIPv2 es un protocolo de enrutamiento sin clase, las máscaras de subred se incluyen en las actualizaciones de enrutamiento, lo que hace que RIPv2 sea más compatible con los ambientes de enrutamiento modernos.
En realidad, RIPv2 es una mejora de las funciones y extensiones de RIPv1, más que un protocolo completamente nuevo. Algunas de estas funciones mejoradas incluyen:
Direcciones de siguiente salto incluidas en las actualizaciones de enrutamiento Uso de direcciones multicast al enviar actualizaciones Opción de autenticación disponible
Como RIPv1, RIPv2 es un protocolo de enrutamiento por vector de distancia. Las dos versiones de RIP tienen las siguientes funciones y limitaciones:
Uso de temporizadores de espera y otros temporizadores para ayudar a impedir routing loops. Uso de horizonte dividido u horizonte dividido con envenenamiento en reversa para ayudar también a impedir
routing loops. Uso de updates disparados cuando hay un cambio en la topología para lograr una convergencia más rápida. Límite máximo en el conteo de saltos de 15 saltos, con el conteo de saltos de 16 que expresa una red inalcanzable.
Aunque puede ser menos popular que otros protocolos de enrutamiento, ambas versiones de RIP aún son apropiadas para algunas situaciones. Si bien RIP carece de las capacidades de muchos protocolos posteriores, su simplicidad y amplia utilización en varios sistemas operativos lo convierten en un candidato ideal para las redes homogéneas más pequeñas, donde es necesaria la compatibilidad con varios fabricantes, especialmente dentro de los ambientes UNIX.
Debido a que necesitará entender RIPv2, incluso si no lo usa, este capítulo se concentrará en las diferencias entre un protocolo de enrutamiento con clase (RIPv1) y un protocolo de enrutamiento sin clase (RIPv2), más que en los detalles de RIPv2. La limitación principal de RIPv1 es que es un protocolo de enrutamiento con clase. Como usted sabe, los protocolos de enrutamiento con clase no incluyen la máscara de subred con la dirección de red en las actualizaciones de enrutamiento, lo que puede ocasionar problemas con las redes o subredes no contiguas que usan la Máscara de subred de longitud variable (VLSM). Como RIPv2 es un protocolo de enrutamiento sin clase, las máscaras de subred se incluyen en las actualizaciones de enrutamiento, lo que hace que RIPv2 sea más compatible con los ambientes de enrutamiento modernos.
En realidad, RIPv2 es una mejora de las funciones y extensiones de RIPv1, más que un protocolo completamente nuevo. Algunas de estas funciones mejoradas incluyen:
Direcciones de siguiente salto incluidas en las actualizaciones de enrutamiento Uso de direcciones multicast al enviar actualizaciones Opción de autenticación disponible
Como RIPv1, RIPv2 es un protocolo de enrutamiento por vector de distancia. Las dos versiones de RIP tienen las siguientes funciones y limitaciones:
Uso de temporizadores de espera y otros temporizadores para ayudar a impedir routing loops. Uso de horizonte dividido u horizonte dividido con envenenamiento en reversa para ayudar también a impedir
routing loops. Uso de updates disparados cuando hay un cambio en la topología para lograr una convergencia más rápida. Límite máximo en el conteo de saltos de 15 saltos, con el conteo de saltos de 16 que expresa una red inalcanzable.
LIMITACIONES DE RIPv1.- 7.1.1 TOPOLOGIA DE LABORATORIO.- La figura muestra la topología y el esquema de direccionamiento que se usa en este capítulo. Este escenario es similar al dominio de enrutamiento con tres routers que se usó al final del Capítulo 5, "RIPv1". Recuerde que los routers R1 y R3 tienen subredes que forman parte de la red principal con clase 172.30.0.0/16 (clase B). También recuerde que R1 y R3 están conectados a R2 con subredes de la red principal con clase 209.165.200.0/24 (clase C). Esta topología es no contigua y no convergerá porque 172.30.0.0/16 está dividida por 209.165.200.0/24.
Direcciones IP de un ejemplo de Cisco
Usted debe haber observado que los enlaces WAN entre R1, R2 y R3 utilizan direcciones IP públicas. Si bien según la RFC 1918, estas direcciones IP no son direcciones privadas, Cisco ha adquirido un cierto espacio de direcciones públicas para usar con los ejemplos.
Las direcciones que se muestran en la figura son todas direcciones IP públicas válidas con las que se puede realizar el enrutamiento en Internet. Cisco ha reservado estas direcciones con fines educativos. Por lo tanto, este curso y los cursos futuros usarán estas direcciones cuando sea necesario utilizar direcciones públicas.
En la figura, R1, R2 y R3 se conectan usando el espacio de direcciones públicas de Cisco 209.165.200.224/27. Debido a que los enlaces WAN sólo necesitan dos direcciones, la 209.165.200.224/27 se subdivide en subredes con una máscara de /30. En la topología, la subred 1 se asigna al enlace WAN entre R1 y R2. La subred 2 se asigna al enlace WAN entre R2 y R3.
Usted debe haber observado que los enlaces WAN entre R1, R2 y R3 utilizan direcciones IP públicas. Si bien según la RFC 1918, estas direcciones IP no son direcciones privadas, Cisco ha adquirido un cierto espacio de direcciones públicas para usar con los ejemplos.
Las direcciones que se muestran en la figura son todas direcciones IP públicas válidas con las que se puede realizar el enrutamiento en Internet. Cisco ha reservado estas direcciones con fines educativos. Por lo tanto, este curso y los cursos futuros usarán estas direcciones cuando sea necesario utilizar direcciones públicas.
En la figura, R1, R2 y R3 se conectan usando el espacio de direcciones públicas de Cisco 209.165.200.224/27. Debido a que los enlaces WAN sólo necesitan dos direcciones, la 209.165.200.224/27 se subdivide en subredes con una máscara de /30. En la topología, la subred 1 se asigna al enlace WAN entre R1 y R2. La subred 2 se asigna al enlace WAN entre R2 y R3.
Interfaces loopback
Observe que R3 utiliza interfaces loopback (Lo0, Lo1 y Lo2). Una interfaz loopback es una interfaz de software que se usa para emular una interfaz física. Como a otras interfaces, se le puede asignar una dirección IP. Otros protocolos de enrutamiento, tales como OSPF, también usan las interfaces loopback para distintos fines. Estos usos se discutirán en el Capítulo 11, OSPF.
En un ambiente de laboratorio, las interfaces loopback son útiles para crear redes adicionales sin tener que agregar más interfaces físicas al router. Se puede hacer ping en una interfaz loopback y la subred puede publicarse en las actualizaciones de enrutamiento. Por lo tanto, las interfaces loopback son ideales para simular múltiples redes conectadas al mismo router. En nuestro ejemplo, R3 no necesita cuatro interfaces LAN para realizar una demostración de múltiples subredes y VLSM. En cambio, usamos interfaces loopback.
Observe que R3 utiliza interfaces loopback (Lo0, Lo1 y Lo2). Una interfaz loopback es una interfaz de software que se usa para emular una interfaz física. Como a otras interfaces, se le puede asignar una dirección IP. Otros protocolos de enrutamiento, tales como OSPF, también usan las interfaces loopback para distintos fines. Estos usos se discutirán en el Capítulo 11, OSPF.
En un ambiente de laboratorio, las interfaces loopback son útiles para crear redes adicionales sin tener que agregar más interfaces físicas al router. Se puede hacer ping en una interfaz loopback y la subred puede publicarse en las actualizaciones de enrutamiento. Por lo tanto, las interfaces loopback son ideales para simular múltiples redes conectadas al mismo router. En nuestro ejemplo, R3 no necesita cuatro interfaces LAN para realizar una demostración de múltiples subredes y VLSM. En cambio, usamos interfaces loopback.
LIMITACIONES DE TOPOLOGIA RIPv1.- Rutas estáticas e interfaces nulas
Para configurar la ruta de superred estática en R2, se usa el siguiente comando: R2(config)#ip route 192.168.0.0 255.255.0.0 Null0
Recuerde que el resumen de ruta permite una única entrada de ruta de alto nivel para representar muchas rutas de nivel bajo y, por consiguiente, reducir el tamaño de las tablas de enrutamiento. La ruta estática de R2 usa una máscara de /16 para resumir las 256 redes comprendidas entre 192.168.0.0/24 y 192.168.255.0/24.
El espacio de dirección que representa la ruta resumida estática 192.168.0.0/16 en realidad no existe. Para simular esta ruta estática, usamos una interfaz nula como interfaz de salida. No es necesario que usted ingrese ningún comando para crear o configurar la interfaz nula. Siempre se encuentra activa pero no reenvía ni recibe tráfico. El tráfico que se envía a la interfaz nula se desecha. Para nuestros fines, la interfaz nula servirá de interfaz de salida de la ruta estática. Recuerde del Capítulo 2, "Enrutamiento estático", que una ruta estática debe tener una interfaz de salida activa antes deser instalada en la tabla de enrutamiento. El uso de la interfaz nula permitirá a R2 publicar la ruta estática en RIP a pesar de que las redes que pertenecen al resumen 192.168.0.0/16 en realidad no existen.
Para configurar la ruta de superred estática en R2, se usa el siguiente comando: R2(config)#ip route 192.168.0.0 255.255.0.0 Null0
Recuerde que el resumen de ruta permite una única entrada de ruta de alto nivel para representar muchas rutas de nivel bajo y, por consiguiente, reducir el tamaño de las tablas de enrutamiento. La ruta estática de R2 usa una máscara de /16 para resumir las 256 redes comprendidas entre 192.168.0.0/24 y 192.168.255.0/24.
El espacio de dirección que representa la ruta resumida estática 192.168.0.0/16 en realidad no existe. Para simular esta ruta estática, usamos una interfaz nula como interfaz de salida. No es necesario que usted ingrese ningún comando para crear o configurar la interfaz nula. Siempre se encuentra activa pero no reenvía ni recibe tráfico. El tráfico que se envía a la interfaz nula se desecha. Para nuestros fines, la interfaz nula servirá de interfaz de salida de la ruta estática. Recuerde del Capítulo 2, "Enrutamiento estático", que una ruta estática debe tener una interfaz de salida activa antes deser instalada en la tabla de enrutamiento. El uso de la interfaz nula permitirá a R2 publicar la ruta estática en RIP a pesar de que las redes que pertenecen al resumen 192.168.0.0/16 en realidad no existen.
RIPv1: REDES NO CONTIGUAS.- Usted ya sabe que RIPv1 es un protocolo de enrutamiento con clase. Como puede ver en elformato de mensaje del RIPv1, en sus actualizaciones de enrutamiento no se incluyen las máscaras de subred. Por lo tanto, RIPv1 no puede admitir redes no contiguas, VLSM ni superredes Classless Inter-Domain Routing (CIDR). Sin embargo, ¿podría haber espacio para expandir el formato de mensaje del RIPv1 a fin de poder incluir la máscara de subred para que verdaderamente podamos tener una configuración de red no contigua? ¿Cómo cambiaría el formato de este mensaje en la figura para incluir la máscara de subred?
RIPv1: INCOMPATIBILIDAD CON VLSM.- Debido a que RIPv1 no envía la máscara de subred en las actualizaciones de enrutamiento, no puede admitir VLSM. El router R3 está configurado con las subredes VLSM, que son miembros de la red clase B 172.30.0.0/16:
172.30.100.0/24 (FastEthernet 0/0) 172.30.110.0/24 (Loopback 0) 172.30.200.16/28 (Loopback 1) 172.30.200.32/28 (Loopback 2)
Como vimos con las actualizaciones 172.30.0.0/16 a R2 de R1 y R3, RIPv1 resume las subredes hacia el borde con clase o usa la máscara de subred de la interfaz saliente para determinar qué subredes publicar.
172.30.100.0/24 (FastEthernet 0/0) 172.30.110.0/24 (Loopback 0) 172.30.200.16/28 (Loopback 1) 172.30.200.32/28 (Loopback 2)
Como vimos con las actualizaciones 172.30.0.0/16 a R2 de R1 y R3, RIPv1 resume las subredes hacia el borde con clase o usa la máscara de subred de la interfaz saliente para determinar qué subredes publicar.
ONFIGURACION DE RIPv2.- 7.2.1 HABILITACION Y VERIFICAION DEL RIPv2.- Comparación de los formatos de mensajes de RIPv1 y RIPv2
RIPv2 se define en RFC 1723. Al igual que la versión 1, RIPv2 se encapsula en un segmento UDP mediante el puerto 520 y puede transportar hasta 25 rutas. Si bien RIPv2 tiene el mismo formato de mensaje básico que RIPv1, se agregan dos extensiones importantes.
La primera extensión en el formato de mensaje de RIPv2 es el campo de la máscara de subred que permite que una máscara de 32 bits se incluya en la entrada de ruta de RIP. Por ende, el router receptor ya no depende de la máscara de subred de la interfaz entrante ni de la máscara con clase al determinar la máscara de subred para una ruta.
La segunda extensión importante para el formato de mensaje de RIPv2 es la adición de la dirección del siguiente salto. La dirección del siguiente salto se usa para identificar una dirección del siguiente salto mejor que la dirección del router emisor, si es que existe. Si el campo se establece todo en ceros (0.0.0.0), la dirección del router emisor es la mejor dirección del siguiente salto. La información detallada sobre cómo se usa la dirección del siguiente salto se encuentra más allá del alcance de este curso. Sin embargo, puede encontrar un ejemplo en RFC 1722 o en Routing TCP/IP Volumen 1 de Jeff Doyle.
RIPv2 se define en RFC 1723. Al igual que la versión 1, RIPv2 se encapsula en un segmento UDP mediante el puerto 520 y puede transportar hasta 25 rutas. Si bien RIPv2 tiene el mismo formato de mensaje básico que RIPv1, se agregan dos extensiones importantes.
La primera extensión en el formato de mensaje de RIPv2 es el campo de la máscara de subred que permite que una máscara de 32 bits se incluya en la entrada de ruta de RIP. Por ende, el router receptor ya no depende de la máscara de subred de la interfaz entrante ni de la máscara con clase al determinar la máscara de subred para una ruta.
La segunda extensión importante para el formato de mensaje de RIPv2 es la adición de la dirección del siguiente salto. La dirección del siguiente salto se usa para identificar una dirección del siguiente salto mejor que la dirección del router emisor, si es que existe. Si el campo se establece todo en ceros (0.0.0.0), la dirección del router emisor es la mejor dirección del siguiente salto. La información detallada sobre cómo se usa la dirección del siguiente salto se encuentra más allá del alcance de este curso. Sin embargo, puede encontrar un ejemplo en RFC 1722 o en Routing TCP/IP Volumen 1 de Jeff Doyle.
LSM Y CIDR- 7.3.1 RIPv2 Y VLSM.- Debido a que los protocolos de enrutamiento sin clase como RIPv2 pueden transportar la dirección de red y la máscara de subred, no necesitan resumir estas redes a sus direcciones con clase en los bordes de redes principales. Por lo tanto, los protocolos de enrutamiento sin clase admiten VLSM. Los routers que usan RIPv2 ya no necesitan usar la máscara de la interfaz saliente para determinar la máscara de subred en la notificación de la ruta. La red y la máscara están incluidas de manera explícita en todas las actualizaciones de enrutamiento.
En las redes que usan un esquema de direccionamiento VLSM, un protocolo de enrutamiento sin clase es esencial para propagar todas las redes junto con las máscaras de subred correctas. Si observamos el resultado de debug ip rip para R3 en la figura, podemos ver que RIPv2 incluye las redes y sus máscaras de subred en las actualizaciones de enrutamiento.
También observe en la figura que una vez más hemos agregado el router R4 en la topología. Recuerde que con RIPv1, R3 sólo enviará a R4 las rutas 172.30.0.0 que tenían la misma máscara que la interfaz de salida FastEthernet 0/0. Debido a que la interfaz es 172.30.100.1 con una máscara de /24, RIPv1 sólo incluyó subredes 172.30.0.0 con una máscara de /24. La única ruta que cumplía con esta condición era 172.30.110.0.
Sin embargo, con RIPv2, R3 ahora puede incluir todas las subredes 172.30.0.0 en sus actualizaciones de enrutamiento a R4, como se muestra en el resultado de depuración en la figura. Esto se debe a que RIPv2 puede incluir la máscara de subred correcta con la dirección de red en la actualización.
En las redes que usan un esquema de direccionamiento VLSM, un protocolo de enrutamiento sin clase es esencial para propagar todas las redes junto con las máscaras de subred correctas. Si observamos el resultado de debug ip rip para R3 en la figura, podemos ver que RIPv2 incluye las redes y sus máscaras de subred en las actualizaciones de enrutamiento.
También observe en la figura que una vez más hemos agregado el router R4 en la topología. Recuerde que con RIPv1, R3 sólo enviará a R4 las rutas 172.30.0.0 que tenían la misma máscara que la interfaz de salida FastEthernet 0/0. Debido a que la interfaz es 172.30.100.1 con una máscara de /24, RIPv1 sólo incluyó subredes 172.30.0.0 con una máscara de /24. La única ruta que cumplía con esta condición era 172.30.110.0.
Sin embargo, con RIPv2, R3 ahora puede incluir todas las subredes 172.30.0.0 en sus actualizaciones de enrutamiento a R4, como se muestra en el resultado de depuración en la figura. Esto se debe a que RIPv2 puede incluir la máscara de subred correcta con la dirección de red en la actualización.
RIPv2 Y CIDR.- Uno de los objetivos de Classless Inter-Domain Routing (CIDR), según lo que establece RFC 1519, es "proporcionar un mecanismo para la agregación de información de enrutamiento". Este objetivo incluye el concepto de creación de superredes. Una superred es un bloque de redes con clase contiguas que se direcciona como una única red. En el router R2, configuramos una superred, una ruta estática a una única red que se usa para representar varias redes o subredes.
Las superredes tienen máscaras que son más pequeñas que la máscara con clase (de /16 en este caso, en lugar de la máscara con clase de /24). Para que la superred se incluya en una actualización de enrutamiento, el protocolo de enrutamiento debe tener la capacidad de transportar esa máscara. Es decir que debe ser un protocolo de enrutamiento sin clase, como RIPv2.
La ruta estática de R2 sí incluye una máscara que es menor que la máscara con clase: R2(config)#ip route 192.168.0.0 255.255.0.0 Null0
En un ambiente con clase, la dirección de red 192.168.0.0 se asocia con la máscara clase C con clase de /24 ó 255.255.255.0. En las redes actuales, ya no relacionamos las direcciones de red con las máscaras con clase. En este ejemplo, la red 192.168.0.0 tiene una máscara de /16 ó 255.255.0.0. Esta ruta puede representar una serie de redes 192.168.0.0/24 o cualquier número de distintos rangos de direcciones. La única forma en la que puede incluirse esta ruta en una actualización de enrutamiento dinámica es con un protocolo de enrutamiento sin clase que incluya la máscara de /16.
Las superredes tienen máscaras que son más pequeñas que la máscara con clase (de /16 en este caso, en lugar de la máscara con clase de /24). Para que la superred se incluya en una actualización de enrutamiento, el protocolo de enrutamiento debe tener la capacidad de transportar esa máscara. Es decir que debe ser un protocolo de enrutamiento sin clase, como RIPv2.
La ruta estática de R2 sí incluye una máscara que es menor que la máscara con clase: R2(config)#ip route 192.168.0.0 255.255.0.0 Null0
En un ambiente con clase, la dirección de red 192.168.0.0 se asocia con la máscara clase C con clase de /24 ó 255.255.255.0. En las redes actuales, ya no relacionamos las direcciones de red con las máscaras con clase. En este ejemplo, la red 192.168.0.0 tiene una máscara de /16 ó 255.255.0.0. Esta ruta puede representar una serie de redes 192.168.0.0/24 o cualquier número de distintos rangos de direcciones. La única forma en la que puede incluirse esta ruta en una actualización de enrutamiento dinámica es con un protocolo de enrutamiento sin clase que incluya la máscara de /16.
COMANDOS PARFA LA VERIFICACION Y RESOLUCION DE PROBLEMAS.- Existen muchas formas de verificar y resolver los problemas de RIPv2. Muchos de los mismos comandos que se usan para RIPv2 pueden utilizarse para verificar y resolver los problemas de otros protocolos de enrutamiento.
Siempre se recomienda comenzar con los principios básicos: 1. Asegúrese de que todos los enlaces (interfaces) estén activados y en funcionamiento. 2. Verifique el cableado. 3. Verifique que tiene la máscara de subred y dirección IP correcta en cada interfaz. 4. Elimine los comandos de configuración que sean innecesarios o se hayan reemplazado con otros comandos.
Siempre se recomienda comenzar con los principios básicos: 1. Asegúrese de que todos los enlaces (interfaces) estén activados y en funcionamiento. 2. Verifique el cableado. 3. Verifique que tiene la máscara de subred y dirección IP correcta en cada interfaz. 4. Elimine los comandos de configuración que sean innecesarios o se hayan reemplazado con otros comandos.
PROBLEMAS COMUNES DE RIPv2.- Cuando se resuelven problemas específicos de RIPv2, hay varias áreas para examinar.
Versión
Un buen lugar para comenzar la resolución de problemas en una red que está ejecutando RIP es verificar que la versión 2 esté configurada en todos los routers. A pesar de que RIPv1 y RIPv2 son compatibles, RIPv1 no admite subredes no contiguas, VLSM ni rutas de superred CIDR. Siempre es mejor usar el mismo protocolo de enrutamiento en todos los routers a menos que exista una razón específica para no hacerlo.
Sentencias de red
Otra fuente de problemas pueden ser las sentencias de red incorrectas o faltantes. Recuerde que la sentencia de red hace dos cosas:
Le permite al protocolo de enrutamiento enviar y recibir actualizaciones en cualquier interfaz local que pertenezca a esa red.
Incluye esa red en sus actualizaciones de enrutamiento a los routers vecinos. Una sentencia de red incorrecta o faltante ocasionará la pérdida de actualizaciones de enrutamiento y provocará
que las actualizaciones de enrutamiento no se envíen o no se reciban en una interfaz.
Versión
Un buen lugar para comenzar la resolución de problemas en una red que está ejecutando RIP es verificar que la versión 2 esté configurada en todos los routers. A pesar de que RIPv1 y RIPv2 son compatibles, RIPv1 no admite subredes no contiguas, VLSM ni rutas de superred CIDR. Siempre es mejor usar el mismo protocolo de enrutamiento en todos los routers a menos que exista una razón específica para no hacerlo.
Sentencias de red
Otra fuente de problemas pueden ser las sentencias de red incorrectas o faltantes. Recuerde que la sentencia de red hace dos cosas:
Le permite al protocolo de enrutamiento enviar y recibir actualizaciones en cualquier interfaz local que pertenezca a esa red.
Incluye esa red en sus actualizaciones de enrutamiento a los routers vecinos. Una sentencia de red incorrecta o faltante ocasionará la pérdida de actualizaciones de enrutamiento y provocará
que las actualizaciones de enrutamiento no se envíen o no se reciban en una interfaz.
No hay comentarios:
Publicar un comentario