ENRUTAMIENTO DE ESTADO DE ENLACE.- 10.1.1 PROCOLO DE ENRUTAMIENTO DE ESTADO DE ENLACE.- A los protocolos de enrutamiento de estado de enlace también se los conoce como protocolos de shortest path first y se desarrollan en torno del algoritmo shortest pathfirst (SPF) de Edsger Dijkstra. El algoritmo SPF se analizará con mayor detalle en una sección posterior.
Los protocolos de enrutamiento de estado de enlace IP se muestran en la figura: Open Shortest Path First (OSPF) Intermediate System-to-Intermediate System (IS-IS)
Los protocolos de enrutamiento de estado de enlace son conocidos por presentar una complejidad bastante mayor que sus vectores de distancia equivalentes. Sin embargo, la funcionalidad y configuración básicas de los protocolos de enrutamiento de estado de enlace no son complejas en absoluto. Incluso el mismo algoritmo puede comprenderse fácilmente, como podrá ver en el siguiente tema. Las operaciones OSPF básicas pueden configurarse con un comando router ospf process-id y una sentencia de red, similar a otros protocolos de enrutamiento como RIP y EIGRP.
Los protocolos de enrutamiento de estado de enlace IP se muestran en la figura: Open Shortest Path First (OSPF) Intermediate System-to-Intermediate System (IS-IS)
Los protocolos de enrutamiento de estado de enlace son conocidos por presentar una complejidad bastante mayor que sus vectores de distancia equivalentes. Sin embargo, la funcionalidad y configuración básicas de los protocolos de enrutamiento de estado de enlace no son complejas en absoluto. Incluso el mismo algoritmo puede comprenderse fácilmente, como podrá ver en el siguiente tema. Las operaciones OSPF básicas pueden configurarse con un comando router ospf process-id y una sentencia de red, similar a otros protocolos de enrutamiento como RIP y EIGRP.
INTRODUCCION AL ALGORITMO SPF.- Al algoritmo de Dijkstra se lo llama comúnmente algoritmo shortest path first (SPF). Este algoritmo acumula costos a lo largo de cada ruta, desde el origen hasta el destino. Si bien al algoritmo de Dijkstra se conoce como el algoritmo shortest path first, éste es de hecho el objetivo de cada algoritmo de enrutamiento.
En la figura, cada ruta se rotula con un valor arbitrario para el costo. El costo de la ruta más corta para que R2 envíe paquetes a la LAN conectada a R3 es 27. Observe que este costo no es 27 para que todos los routers alcancen la LAN conectada a R3. Cada router determina su propio costo hacia cada destino en la topología. En otros términos, cada router calcula el algoritmo SPF y determina el costo desde su propia perspectiva. Esto se volverá más evidente más adelante en este capítulo.
En la figura, cada ruta se rotula con un valor arbitrario para el costo. El costo de la ruta más corta para que R2 envíe paquetes a la LAN conectada a R3 es 27. Observe que este costo no es 27 para que todos los routers alcancen la LAN conectada a R3. Cada router determina su propio costo hacia cada destino en la topología. En otros términos, cada router calcula el algoritmo SPF y determina el costo desde su propia perspectiva. Esto se volverá más evidente más adelante en este capítulo.
10.1.4 CONOCIMIENTOS SOBRE REDES CONECTADAS DIRECTAMENTE.- Haga clic en Proceso del enrutamiento de estado de enlace en la figura.
La topología muestra ahora las direcciones de red para cada enlace. Cada router aprende sobre sus propios enlaces, sus propias redes directamente conectadas del mismo modo que se analizó en el Capítulo 1, "Introducción al enrutamiento y envío de paquetes". Cuando se configura una interfaz de router con una dirección IP y una máscara de subred, la interfaz se vuelve parte de esa red.
La topología muestra ahora las direcciones de red para cada enlace. Cada router aprende sobre sus propios enlaces, sus propias redes directamente conectadas del mismo modo que se analizó en el Capítulo 1, "Introducción al enrutamiento y envío de paquetes". Cuando se configura una interfaz de router con una dirección IP y una máscara de subred, la interfaz se vuelve parte de esa red.
ENVIO DE PAQUETES DE SALUDO A LOS VECINOS.- El segundo paso en el proceso de enrutamiento de estado de enlace consiste en lo siguiente:
Cada router es responsable de reunirse con sus vecinos en redes conectadas directamente.
Los routers con protocolos de enrutamiento de estado de enlace utilizan un protocolo de saludo para descubrir cualquier vecino en sus enlaces. Un vecino es cualquier otro router habilitado con el mismo protocolo de enrutamiento de estado de enlace.
Cada router es responsable de reunirse con sus vecinos en redes conectadas directamente.
Los routers con protocolos de enrutamiento de estado de enlace utilizan un protocolo de saludo para descubrir cualquier vecino en sus enlaces. Un vecino es cualquier otro router habilitado con el mismo protocolo de enrutamiento de estado de enlace.
10.1.7 SATURACION DE PAQUETES DE ESTADO DE ENLACE A LOS VECINOS.- Como se muestra en la figura, el cuarto paso en el proceso de enrutamiento de estado de enlace consiste en lo siguiente:
Cada router inunda el LSP a todos los vecinos, que luego almacenan todos los LSP recibidos en una base de datos.
Cada router inunda con su información de estado de enlace a todos los demás routers de estado de enlace en el área de enrutamiento. Siempre que un router recibe un LSP de un router vecino, envía de inmediato dicho LSP a todas las demás interfaces, excepto la interfaz que recibió el LSP. Este proceso crea un efecto de saturación de los LSP desde todos los routers a través del área de enrutamiento.
Cada router inunda el LSP a todos los vecinos, que luego almacenan todos los LSP recibidos en una base de datos.
Cada router inunda con su información de estado de enlace a todos los demás routers de estado de enlace en el área de enrutamiento. Siempre que un router recibe un LSP de un router vecino, envía de inmediato dicho LSP a todas las demás interfaces, excepto la interfaz que recibió el LSP. Este proceso crea un efecto de saturación de los LSP desde todos los routers a través del área de enrutamiento.
OSPF
OSPF fue diseñado por el grupo de trabajo de OSPF: IETF (Grupo de trabajo de ingeniería de Internet), que aún hoy existe. El desarrollo de OSPF comenzó en 1987 y actualmente hay dos versiones en uso: OSPFv2: OSPF para redes IPv4 (RFC 1247 y RFC 2328) OSPFv3: OSPF para redes IPv6 (RFC 2740)
La mayor parte del trabajo en OSPF lo realizó John Moy, autor de la mayoría de los RFC sobre OSPF. Su libro, OSPF, Anatomy of an Internet Routing Protocol ofreceuna interesante perspectiva sobre el desarrollo de OSPF.
OSPF fue diseñado por el grupo de trabajo de OSPF: IETF (Grupo de trabajo de ingeniería de Internet), que aún hoy existe. El desarrollo de OSPF comenzó en 1987 y actualmente hay dos versiones en uso: OSPFv2: OSPF para redes IPv4 (RFC 1247 y RFC 2328) OSPFv3: OSPF para redes IPv6 (RFC 2740)
La mayor parte del trabajo en OSPF lo realizó John Moy, autor de la mayoría de los RFC sobre OSPF. Su libro, OSPF, Anatomy of an Internet Routing Protocol ofreceuna interesante perspectiva sobre el desarrollo de OSPF.
No hay comentarios:
Publicar un comentario